Understanding AI Context: MCP, RAG, Tools & Context Explained
0:000:00
Understanding AI Context: MCP, RAG, Tools & Context Explained
Component Definitions
Component | What It Is | Key Features | Example |
---|---|---|---|
Context | All information used by the LLM during generation | β’ Chat, user input, RAG, tool results β’ Bounded by token limit β’ Temporary session memory | "My name is Raj" remembered during session |
MCP | Model Context Protocol β open-source protocol for LLM β system interaction | β’ JSON-RPC 2.0 spec β’ 1,000+ MCP servers by early 2025 β’ Standardizes tool execution, resource access | Claude or GPT calls company CRM via MCP server |
RAG | Retrieval-Augmented Generation β combines semantic search with LLM output | β’ Embeds user query β’ Searches vector DB β’ Injects relevant docs into context | LLM retrieves legal cases β summarizes |
Tools | External APIs or code the LLM can run | β’ Accessed via MCP or native tool APIs (like OpenAI's function calling) β’ Enables live queries, code, search | getWeather("Hyderabad") fetches live data |
System Architecture
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β CONTEXT WINDOW β
β ββββββββββββββ βββββββββββββββ ββββββββββββββββ β
β β User Input β β Retrieved β β Tool Results β β
β β & History β β Documents β β (Live Data) β β
β ββββββββββββββ βββββββββββββββ ββββββββββββββββ β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β²
β Context feeds the model
βΌ
βββββββββββββββββββββββ
β LLM β
β (Claude / GPT / β
β Gemini / Mistral) β
βββββββββββββββββββββββ
β
βββββββββββββββββΌββββββββββββββββ
βΌ βΌ βΌ
βββββββββββββββ βββββββββββββββ βββββββββββββββ
β MCP β β RAG β β Native APIs β
β (Protocol) β β (Retrieval) β β / Services β
ββββββββ¬βββββββ ββββββββ¬βββββββ ββββββββ¬βββββββ
βΌ βΌ βΌ
βββββββββββββββ ββββββββββββββββ ββββββββββββββββ
β MCP Servers β β Vector DBs β β External APIsβ
β β’ Tools β β β’ Pinecone β β β’ Weather β
β β’ Resources β β β’ Chroma β β β’ Search β
β β’ Prompts β β β’ FAISS β β β’ Code Exec β
βββββββββββββββ ββββββββββββββββ ββββββββββββββββ
Component Relationships
Component | Feeds Into | Purpose |
---|---|---|
Context | LLM | Holds all runtime inputs |
MCP | Context via tool results | Standardized tool & data access |
RAG | Context via retrieved docs | Domain-specific semantic enrichment |
Tools | Context via live results | Real-time functionality (e.g., code, APIs) |
Current Industry Adoption
Provider | Status |
---|---|
Anthropic | Creator & lead maintainer of MCP |
OpenAI | Native function calling API; MCP support via community |
Function calling capabilities in Gemini API | |
Microsoft | MCP integrated into Azure OpenAI Studio and Foundry (Preview) |
Key Note: While MCP is gaining adoption, each provider also maintains their own tool calling mechanisms (like OpenAI's function calling API) alongside MCP support.