Salesforce API Integration Guide - Part 2


0:00
0:00

Approaches to convert it to an LLM+MCP (Model Context Protocol) system

Here are the main options and recommendations:

Conversion Options

1. Direct Form-to-API Mapping

Convert each form field to structured API parameters:

// MCP tool definition
{
  name: "create_support_case",
  description: "Create a support case in system",
  inputSchema: {
    type: "object",
    properties: {
      // Contact Information
      contactName: { type: "string", description: "Contact person name" },
      email: { type: "string", description: "Contact email address" },
      phone: { type: "string", description: "Contact phone number" },
      preferredContact: {
        type: "string",
        enum: ["None", "Email", "Phone"],
        description: "Preferred contact method"
      },
      additionalEmail: { type: "string", description: "Additional contact email" },

      // Case Details
      subject: { type: "string", description: "Case subject line" },
      supportProduct: { type: "string", description: "Product needing support" },
      description: { type: "string", description: "Detailed issue description" },
      operatingSystem: { type: "string", description: "Operating system" },
      browser: { type: "string", description: "Internet browser" },

      // Options
      suppressEmails: { type: "boolean", default: false },
      priority: { type: "string", enum: ["Low", "Medium", "High", "Critical"] },
      attachments: { type: "array", items: { type: "string" } }
    },
    required: ["contactName", "email", "subject", "description"]
  }
}

2. Natural Language Processing Approach

Let the LLM extract information from conversational input:

// MCP tool for intelligent case creation
{
  name: "create_case_from_conversation",
  description: "Create support case from natural language description",
  inputSchema: {
    type: "object",
    properties: {
      conversationText: {
        type: "string",
        description: "Natural language description of the issue and contact details"
      },
      userPreferences: {
        type: "object",
        properties: {
          suppressEmails: { type: "boolean", default: false },
          priority: { type: "string" },
          preferredContact: { type: "string" }
        }
      }
    }
  }
}

3. Hybrid Interactive Approach

Combine structured data collection with conversational flow:

// Multi-step MCP implementation
const caseCreationTools = [
  {
    name: 'collect_contact_info',
    description: 'Collect and validate contact information',
  },
  {
    name: 'analyze_issue_description',
    description: 'Process issue description and categorize',
  },
  {
    name: 'suggest_product_category',
    description: 'Suggest appropriate product/category based on description',
  },
  {
    name: 'create_final_case',
    description: 'Create the support case with all collected information',
  },
];

Best Approach Recommendation

Recommended: Multi-Tool MCP Strategy

This approach breaks down the form into logical components and uses multiple MCP tools:

// 1. Contact Information Collection
async function collectContactInfo(userInput) {
  // Extract name, email, phone from natural language
  // Validate email format
  // Determine preferred contact method
}

// 2. Issue Analysis and Categorization
async function analyzeIssue(description) {
  // Use LLM to categorize the issue
  // Suggest appropriate product/service
  // Determine priority level
  // Extract technical details (OS, browser, etc.)
}

// 3. Case Creation with Options
async function createSupportCase(caseData, options = {}) {
  const {
    suppressEmails = false,
    autoAssign = true,
    notifyManager = false,
    attachments = [],
  } = options;

  // Map to API structure
  const aCase = {
    contact: {
      name: caseData.contactName,
      email: caseData.email,
      phone: caseData.phone,
      preferredContact: caseData.preferredContact,
    },
    case: {
      subject: caseData.subject,
      description: caseData.description,
      product: caseData.supportProduct,
      priority: caseData.priority,
      operatingSystem: caseData.operatingSystem,
      browser: caseData.browser,
    },
    options: {
      suppressEmails,
      autoAssign,
      notifyManager,
    },
  };

  // Call API
  return await anAPI.createCase(aCase);
}

Usage Example:

// User input: "Hi, I'm John from Acme Corp. I'm having trouble with OneSite -
// the dashboard won't load in Chrome on Windows 10. My email is john@acme.com"

// LLM processes this and calls MCP tools:
const contactInfo = await collectContactInfo(userInput);
const issueAnalysis = await analyzeIssue(userInput);
const caseResult = await createSupportCase(
  {
    ...contactInfo,
    ...issueAnalysis,
  },
  {
    suppressEmails: false,
    autoAssign: true,
  },
);

Implementation Benefits

Advantages of This Approach:

  1. Natural Interaction - Users can describe issues conversationally
  2. Intelligent Extraction - LLM extracts structured data from unstructured input
  3. Flexible Options - Support for advanced case creation options
  4. Validation - Built-in validation and error handling
  5. Extensible - Easy to add new fields or options

Additional Features to Consider:

  • Attachment Handling - File upload and processing
  • Case Templates - Pre-defined templates for common issues
  • Follow-up Automation - Automatic status updates and notifications
  • Integration Points - Connect with existing ticketing systems
  • Analytics - Track case creation patterns and success rates

This approach transforms the static form into an intelligent, conversational interface while maintaining all the functionality and options of the original system.

Last updated on July 6, 2025

🔍 Explore More Topics

Discover related content that might interest you

TwoAnswers Logo

Providing innovative solutions and exceptional experiences. Building the future.

© 2025 TwoAnswers.com. All rights reserved.

Made with by the TwoAnswers.com team